Removal of structurally different dyes in submerged membrane fungi reactorâ⇬╚Biosorption/PAC-adsorption, membrane retention and biodegradation
نویسندگان
چکیده
The long-term performance of a submerged membrane fungi reactor was observed while a synthetic textile wastewater containing either or both of the two structurally different azo dyes was continuously fed. Compared to the Acid Orange II dye (simpler structure), higher biosorption but slower biodegradation of the polymeric dye (Poly S119) was observed in sterile batch tests. In the membrane bioreactor (MBR), although a relative abundance of fungi (66%) without any specific control of bacterial contamination could be maintained, unlike in pure fungus culture, enzymatic activity was below detection limit. Nevertheless, >99% removal of Poly S119 was consistently achieved under a dye loading of 0.1 g L−1 d−1 (HRT = 1 d). Comparison of the reactor-supernatant (SQ) and the membrane-permeate (PQ) qualities (31% improvement) revealed the significant contribution of the membrane to the overall removal (biosorption, cake layer filtration, biodegradation) of Poly S119. Contrary to the faster removal of Orange II in batch test, membrane-permeate quality revealed 93% removal of the dye in MBR (corresponding SQ = 82%). However, excellent (>99%) stable removal of Orange II or of both the dyes together, as well as stable enzymatic activity was observed following addition of powdered activated carbon (PAC) in the MBR. In accordance with real textile wastewater, dye contributed only 5% of the TOC loading (0.944 g L−1 d−1) in this study. In contrast to low TOC removal by fungi alone, the MBR containing mixed microbial community steadily achieved >98% removal, which improved further to >99% after PAC addition.
منابع مشابه
The Study of Organic Removal Efficiency and Membrane Fouling in a Submerged Membrane Bioreactor Treating Vegetable Oil Wastewater
The characterizations of vegetable oil wastewater (VOW) are unpleasant odor, dark color, and high organic contents, including large amounts of oil and grease (O&G), chemical oxygen demand (COD), fatty acids and lipids. Therefore, VOWs should be treated efficiently to avoid the environment pollution. The aim of present study was the investigation of VOW biological treatment using membrane biorea...
متن کاملComparison of the performance of submerged membrane bioreactor (SMBR) and submerged membrane adsorption bioreactor (SMABR).
This study focuses on comparing the performance of submerged membrane bioreactor (SMBR) and submerged membrane adsorption bioreactor (SMABR) over a period of 20 days at a hydraulic retention time (HRT) of 3.1h. The effects of PAC on critical flux and membrane fouling were also investigated. The SMABR exhibited better results in terms of mixed liquor suspended solids (MLSS) growth, DOC removal (...
متن کاملInvestigation of Membrane De-clogging Techniques in the Submerged Membrane Filtration Adsorption Hybrid System (SMFAHS)
Membrane clogging is a major obstacle to the successful operation of the membrane separation process. A submerged hollow fibre membrane with powdered activated carbon (PAC) adsorption (adsorption-membrane hybrid system) was used for the removal of organics from a synthetic wastewater representative of biologically treated sewage e.fJluent. PAC usage successfully adsorbs the majority of the orga...
متن کاملInfluence of the bioreaction on long term operation of a submerged membrane adsorption hybrid system
This study is to investigate on the long term performance of submerged membrane adsorption hybrid system (SMAHS) for organic matter removal from synthetic wastewater representative of biologically treated wastewater using low dose of powder activated carbon (PAC). A simple periodic backwash system is used to declog the hollow fiber membrane. In this reactor, bioreaction takes place due to the g...
متن کاملNatural Organic Matter Removal and Fouling in a Low Pressure Hybrid Membrane Systems
The objective of this study was to investigate powdered activated carbon (PAC) contribution to natural organic matter (NOM) removal by a submerged MF and UF hybrid systems. It was found that filtration of surface waters by a bare MF and UF membranes removed negligible TOC; by contrast, significant amounts of TOC were removed when daily added PAC particles were predeposited on the membrane surfa...
متن کامل